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Abstract

Smoothed finite element method (SFEM) using quadrilateral elements was recently proposed by Liu et al. [A smoothed finite element method
for mechanics problems, Comput. Mech. 39 (2007) 859–877; Free and forced vibration analysis using the smoothed finite element method
(SFEM), J. Sound Vib. 301 (2007) 803–820; Theoretical aspects of the smoothed finite element method (SFEM), Int. J. Numer. Methods Eng.
(2006), in press] to improve the accuracy and convergence rate of the existing standard four-node finite element method (FEM). In this paper
the SFEM is further extended to a more general case, n-sided polygonal smoothed finite elements (nSFEM), in which the problem domain
can be discretized by a set of polygons, each with an arbitrary number of sides. Stability condition is examined for this type of new elements
and some criteria are provided to avoid the presence of spurious zero-energy modes. Approach to constructing nSFEM shape functions are
also suggested with emphasis on a novel and simple averaging method. Selective integration scheme is recommended to overcome volumetric
locking for nearly incompressible materials. Several numerical examples are investigated and the present results are in good agreement with
exact solutions or FEM results. It is found that the present method gives very accurate stresses and desirable convergence rate as compared
with FEM. In addition problem domain can be discretized in a very flexible manner as demonstrated in the examples.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Finite element method; Smoothed finite element method; Strain smoothing; Stability; Locking

1. Introduction

The finite element method (FEM) [1,2] has become the most
popular and powerful numerical tool for solving problems in en-
gineering and science. However, this does not mean that no im-
provement can be made on the current FEM. Recently smoothed
finite element method (SFEM) has been proposed by Liu
et al. [3,4] by means of combining the strain smoothing tech-
nique with the conventional FEM technology. In this method,
strain smoothing operation is performed on an entire or part of
an element to replace the conventional strains obtained using
displacement-compatible equations in FEM. In SFEM both
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approximated accuracy and convergence rate can be improved
further while the number of variables remains unchanged as
that of irreducible form. In addition, the SFEM has some other
superior features. Due to the presence of strain projection pro-
cess, only shape function itself is involved in the calculation
of field gradients and no coordinate transformations need to be
performed. Hence shape function used in the field approxima-
tion can be easily constructed and the element is allowed to
be of arbitrary shape and thus field domain can be discretized
in a more flexible way. Most importantly, these good features
are gained without increasing the efforts in both modeling and
computation and modification to existing FEM codes is also an
easy task.

Later on they have also proved that the upper and lower
bound solutions in SFEM can be obtained by varying the num-
ber of smoothing cells (SCs) that an element is divided [5]. If
each element is employed as one cell, an upper bound solution
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is retrieved that corresponds to finite element displacement-
compatible model solution using reduced integration. Con-
versely if the number of SCs approaches infinity a lower bound
solution can be obtained that conforms to the finite element
displacement-compatible model using full integration. Gener-
ally the SFEM solution falls between the two bound solutions
and with the increase of SC in a monotonic manner, the accu-
racy as well as the convergence rate will transform gradually
from the upper bound to the lower bound [5]. With such a
solid theoretical foundation established, users can therefore
have more freedom in choosing a suitable number of SCs that
gives desired accuracy.

However, some problems still remain unclear. As mentioned
in [3], singularity problem often occurs in the process of com-
putation if insufficient number of SCs is adopted in SFEM and
as a result even single-element patch test can fail. We are still
not clear about what is a suitable number of cells in the sub-
division of an element with arbitrary number of sides. As any
shape of quadrilateral element is workable in practice, can we
use more general polygons (with arbitrary number of sides)
for domain discretization? Will this type of element be stable
and convergent and under what conditions? With these prob-
lems in mind we aim to extend the SFEM to even more general
case, i.e., a smoothed polygonal element with arbitrary sides
(or nSFEM). We try to find the answers by means of the exist-
ing theories and numerical approach in this work.

The paper is organized as follows. Section 2 will revisit the
idea, formulation and theoretical aspects of SFEM briefly. Sta-
bility condition will be studied in detail in Section 3 and some
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Fig. 1. A free quadrilateral SFEM element with different number of cells for eigenvalue analysis.

criteria will be given in selection of SCs. Some approaches will
be suggested on the construction of shape functions for polyg-
onal elements in Section 4. Some numerical examples will be
analyzed to demonstrate the accuracy, stability and convergence
properties of the present method in Section 5, which is followed
by some concluding remarks in the last section.

2. Briefing of SFEM

A 2D static elasticity problem can be described by equilib-
rium equation in the problem domain � bounded by �

�ij ,j + bi = 0 in � (1)

which subject to the boundary conditions: �ij nj = ti on �t and
ui = ūi on �u, where �ij is the component of stress tensor and
bi the component of body force; ni is the unit outward normal.
Its variational weak form is derived as∫
�

�∇s(u)ijDijkl∇s(u)kl d� −
∫
�t

�uiti d� = 0. (2)

Similar to FEM, the domain discretization of SFEM is based on
element, but the shape of an element can be much more flexible,
such as concave element, polygonal and tile element. Galerkin
weak form given in Eq. (2) is applied and integration is per-
formed on the basis of element. Depending on the requirement
of stability and accuracy, the elements may be further subdi-
vided into finite number of SCs, which is denoted as nSC (see
Fig. 1 for example). The issue regarding cell division will be
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studied in more detail in Section 3. Strain smoothing operation
and stiffness evaluation are performed simultaneously on each
cell. The assembly of stiffness of each cell yields an element
stiffness matrix. Detailed formulation can be found in Ref. [3].

In the SFEM, a smoothing operation is performed to the
gradient of displacement on the smoothing cell �C, which may
be the entire or part of an element

∇̃uh(xC) =
∫
�C

∇uh(x) d�∫
�C

d�
= 1

AC

∫
�C

∇uh(x) d�, (3)

where AC=∫
�C

d� and �C is the smoothing cell. The operation
is very similar to the mean dilatation procedure to deal with
the incompressibility in nonlinear mechanics [6]. Recently the
technique was used by Chen et al. [7,8] to stabilize the nodal
integration in the context of mesh-free method.

As in the FEM, upon field discretization, displacement can
be approximated by

uh(x) =
n∑

I=1

NI (x)uI , (4)

where n is the number of nodes in an element. Substituting uh

into Eq. (3) one can get the smoothed gradients of displacement

∇̃uh(xC) = 1

AC

∫
�C

uh(x)n(x) d�

= 1

AC

n∑
I

∫
�C

NI (x)n(x) d�uI , (5)

where �C is the boundary of the smoothing cell �C. Note that
the smoothing operation makes the domain integration become
boundary integration around the smoothing cell in Eq. (5). Par-
ticularly in 2D elasticity problems the smoothed strain can be
expressed as

�̃h(xC) =
n∑
I

B̃I (xC)dI , (6)

where dI = [uI vI ]T is the nodal displacement vector. B̃I is
the smoothed strain matrix as

B̃I (xC) =
⎡
⎢⎣

b̃I1(xC) 0

0 b̃I2(xC)

b̃I2(xC) b̃I1(xC)

⎤
⎥⎦ . (7)

It is easy to relate the smoothed strain matrix B̃I to its coun-
terpart BI = ∇sNI (x) in FEM [5] by

B̃I = 1

AC

∫
�C

BI (x) d�. (8)

Therefore, B̃I is the averaged value of the standard BI over
the cell �C. If one Gaussian point is used for line integration
along each edge �C

i of �C, Eq. (7) can be transformed to its

algebraic form

b̃Ik(xC) =
M∑
i=1

NI (xGP
i )nC

ikl
C
i (k = 1, 2), (9)

where xGP
i is the midpoint (Gaussian point) of boundary seg-

ment of �C
i , whose length and outward unit normal are denoted

as lC
i and nC

i , respectively, and M is the edge number of the
cell �C.

The smoothed element stiffness matrix can be obtained by
assembly of those on each of the smoothing cell in the element,
i.e.,

K̃e =
nSC∑
C

B̃T
CDB̃CAC. (10)

The smoothed B̃C matrix is constructed on the basis of cell
and nSC is the number of cells that the interested element is
subdivided.

It is easy to prove that the smoothing operation in a cell
ensures that the equilibrium equation is satisfied for each point
within the cell and hence it is called equilibrator.

The assemblage of each of the element stiffness matrix K̃e
leads to system stiffness matrix and the discrete governing equa-
tion is given as

K̃d = f , (11)

where K̃ is the smoothed system stiffness matrix and f is the
nodal force vector given by

fI =
∫
�

NT
I b d� +

∫
�

NT
I t d�. (12)

The solution of SFEM using nSC =1 is identical with the FEM
using reduced integration. Sometimes the equilibrium model
is recovered which secures internal equilibrium and continu-
ous traction transmission [9]. As its stiffness is generally very
flexible, the solution corresponds to an upper bound solution.
Conversely, if the number of SCs that subdivide an element
approaches infinity, one has

K̃IJ → KIJ =
∫
�

BT
I DBJ d� (as nSC → ∞) (13)

with nSC approaching infinity, the solution will transform to
displacement-compatible model which preserves deformation
compatibility over the whole domain including points between
adjacent elements. The solution is equivalent to the counter-
part in FEM using full integration, which gives a lower bound
solution due to the very stiff model. It is proved that for
1 < nSC < ∞ the solution is not variationally consistent [5].
Instead it falls in between the solution of equilibrium model
(upper bound) and that of displacement compatible model
(lower bound). Since the conformability is only preserved
along cell edges and element sides, the generated stiffness ma-
trix of SFEM is not as stiff as the FEM and the computed dis-
placement is generally underestimated and thus more accurate
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compared with FEM solution. Instead the loss of conformabil-
ity inside smoothing cells brings about the equilibrium state
of all interior points on them, which gives rise to very good
accuracy in both displacement and stress. In addition, besides
the comparable convergence rate in displacement, the energy
convergence rate in SFEM is proven and numerically ob-
served to be higher than the FEM due to the strain smoothing
operation [3,5].

3. Stability condition

As reported in [3] and later on proven in [5], if the entire ele-
ment is employed as one smoothing cell (nSC = 1) zero-energy
modes will appear in the eigenvalue analysis of a quadrilat-
eral element. The quadrilateral element divided into four SCs
(Fig. 1) can effectively avoid spurious energy modes. Actually
further study is still needed to investigate this issue especially
for a more general case—a polygonal element.

We first take a free quadrilateral element for example and
perform eigenvalue analysis. As shown in Fig. 1, when nSC =
1, only three non-zero eigenvalues exist, which is equivalent
to three independent “strain relations” (n� = 3) in FEM [1].
When nSC = 2 triangular or quadrilateral cells, we can get six
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Fig. 2. A dodecagonal SFEM element divided into 2, 4, 6 and 12 smoothing cells subjected to the standard patch test.

non-zero eigenvalues (n�=6) but zero-energy modes still exist.
When nSC=3 triangular or quadrilateral cells and n�=9, we find
that except three rigid-body-movement modes, no more zero-
energy mode appears. Four-triangular and four-quadrilateral
cells both work well for this case. For a polygonal element
as shown in Fig. 2, it is more natural to divide it into trian-
gular cells. Unless stated otherwise, we mainly use triangular
cells for strain smoothing for a polygonal element of arbitrary
shape. The next example is standard patch test using a single
element of dodecagon shape with three rigid-body movements
being fixed. The dodecagonal element is subdivided into differ-
ent cells as illustrated in Fig. 2. The test results are provided in
Table 1. It is seen that, when the number of n� is bigger than nu,
single-element patch test can pass, otherwise it will fail, where
nu is the number of displacement freedoms. It is also noticed
that for cases of nSC = 7 or 8, the patch test passes condition-
ally. It means that in some cases, patch test can be passed but
for others it fails. The general rule is that, for a given number
of smoothing cells, the number of edges for each cell should
be as small as possible and different types of cells need to be
distributed evenly and symmetrically. As such divisions cannot
be implemented systematically, they are not recommended in
practice.
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Table 1
Division of a dodecagonal element into different number of cells

nu nSC n� = 3nSC Rank(Ke) Patch test Figure

nu = 12 × 2 − 3 = 21 2 6 6 Fail 2(a)
4 12 12 Fail 2(b)
6 18 18 Fail 2(c)
7 21 – Pass (conditionally)
8 24 – Pass (conditionally)

12 36 21 Pass (unconditionally) 2(d)

A D

CB

n-sided element

(n = 4 - 12)

nSC = n

Fig. 3. A patch for the standard patch test with a polygonal element with
various number of sides.

A standard patch test is performed for the patch given in
Fig. 3 and the number of sides of the central polygonal element
is changed from 4 to 12. The element is always subdivided using
the same number of cells as its sides. The four corner nodes on
the boundary are constrained with a linear displacement field in
both directions. It is found that all cases can pass the standard
patch test within machine precision without any singularity
problems.

Based on these numerical experiments, the following remarks
can be made:

(1) One SC is equivalent to one Gaussian quadrature point in
FEM with three independent strain relations, which pro-
vides three constraints to the cell.

(2) To avoid singularity, a necessary (but not sufficient) condi-
tion is that

n� �nu, (14)

where nu is the number of the free DOF of displacement
and n� = 3nSC is the number of independent relations of
strain or stress.

(3) The number of edges of each smoothing cell should be
less than five and different types of cells should be spaced
evenly and symmetrically.

(4) The stiffness matrix of an n-sided polygonal element sub-
divided into n triangular SCs is always non-singular and

hence stable, which is recommended in nSFEM and will
be adopted in later examples as well.

4. Selective integration scheme for incompressible material

Volumetric locking tends to appear when the Poisson’s ra-
tio approaches 0.5. The application of mixed formulations can
avoid such difficulties. A stabilized nodally integrated linear
tetrahedral was developed and shown to perform well in prob-
lems with nearly incompressible materials [10]. As done in
conventional FEM, selective integration is another alternative
effective method to deal with this issue, which can also be em-
ployed in nSFEM. In FEM different quadrature orders are used
for different material parts [11] while in the current method we
can simply vary the number of SCs.

The material property matrix D for isotropic materials can
be decomposed as

D = D1 + D2, (15)

where D1 and D2 are termed as �-part and �-part of D, and the
shear modulus �=E/[2(1+v)] and �=vE/[(1+v)(1−2v)].
The quantities E and v areYoung’s modulus and Poisson’s ratio,
respectively. Specifically for plane strain cases

D =
⎡
⎣

� + 2� � 0

� � + 2� 0

0 0 �

⎤
⎦ = �

⎡
⎣

2 0 0

0 2 0

0 0 1

⎤
⎦

+ �

⎡
⎣

1 1 0

1 1 0

0 0 0

⎤
⎦ = D1 + D2. (16)

For axisymmetric problems

D=�

⎡
⎢⎢⎢⎣

2 0 0 0

0 2 0 0

0 0 1 0

0 0 0 2

⎤
⎥⎥⎥⎦ +�

⎡
⎢⎢⎢⎣

1 1 0 1

1 1 0 1

0 0 0 0

1 1 0 1

⎤
⎥⎥⎥⎦ = D1+D2. (17)

In nSFEM we use one SC (an entire element) to calculate the
stiffness matrix related to �-part and n SCs to calculate the
remainder part, i.e.,

K̃e = K̃e1 + K̃e2 =
n∑
C

B̃T
CD1B̃CAC + B̃TD2B̃Ae, (18)
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where Ae is the area of element and n is equal to the number
of element sides.

5. Construction of nSFEM shape function

In the nSFEM, only shape function values at some particular
points in an element are needed and no analytical form is re-
quired over the entire element. This gives tremendous freedom
in shape function construction and many approaches can be
used to devise the nSFEM shape functions. As stated above, for
an n-sided polygonal element (n�4), we can simply divide the
element into n triangular SCs when calculating element stiff-
ness matrix. The shape functions for the points on an element
side are constructed linearly using two related nodes that bound
this segment. The shape functions for the interior points can be
obtained using the natural element method, polygonal finite el-
ements proposed by Sukumar and Ghosh et al. [12–15], or the
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Fig. 4. Construction of simple averaging shape functions for a polygonal element.
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Fig. 5. Cantilever beam and its polygonal elements using Voronoi diagrams.

mesh-free techniques, such as MLS/RK methods [16,17], radial
point interpolation method (RPIM) [18–21]. It should be men-
tioned here, mesh-free techniques can be employed to construct
shape function for any points, whether on element sides or in-
side them. Supporting nodes covered in local support domain
of the point of interest are used to construct its shape functions.
However, similar to the FEM, nSFEM only uses nodes of the
interested element to derive the shape functions for its interior
points in this work. Another point should be stressed that, to
maintain geometric conformability between two adjacent ele-
ments, linear shape functions are always used on each element
side using two related nodes. As problem domain boundaries
� always coincide with a set of element sides, linear proper-
ties can be preserved for shape functions on them. To construct
RPIM shape functions with linear polynomial consistency, at
least linear polynomial basis should be included in its interpo-
lation basis.
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For whatever method to be used, the following conditions
need to be satisfied for the discrete points of an element: (1)
delta function:Ni(xj )=�ij ; (2) partition of unity:

∑n
i=1 Ni(x)=

1; (3) linear compatibility: linear shape functions along el-
ement sides; (4) linear consistency:

∑n
i=1 Ni(x)xi = x; and

(5) Ni(x)�0. Any shape function satisfying the five condi-
tions can be used in SFEM. Condition (4) is essential to re-
produce the linear polynomial fields such as in the standard
patch test.

A novel and very simple approach is described here to con-
struct a linear displacement field. For a polygonal element,
a general central point O can always be found as shown in
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Fig. 4, whose coordinates are calculated using

xO = 1

n

n∑
i

xi , yO = 1

n

n∑
i

yi , (19)

where the number of nodes n of the polygonal element may be
different from one element to the other and xi = [xi yi]T.

Due to the linear compatibility property, shape functions at
point O can be easily evaluated as

O :
[

1

n

1

n
· · · 1

n

]
(size: 1 × n). (20)
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It should be mentioned that the purpose of introducing of cen-
troid point O is to facilitate the evaluation of the shape functions
of some discrete points inside the interested element. No extra
degrees of freedom are associated with point O. In other words,
this point carries no additional independent field variable.

When a linear displacement field on a cell edge is used, one
Gauss point is sufficient on each edge of a cell (see Fig. 4).
Therefore, only shape functions at midpoint on each edge are
needed to calculate. For midpoint on the side of the element,
its shape functions are evaluated averagely using two related
nodes while for interior midpoint, its shape functions are evalu-
ated averagely using point O and the other related node. Using
Fig. 4 for example, shape functions at point A are calculated
using nodes #3 and #4 while those at B using point O and #3.
Nevertheless some special cases may still be encountered in
practical computations especially for a concave element.

In order to pass a standard linear patch test, the following
points need to be satisfied. If point O coincides with a node,
its shape functions should employ the same values as this node
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Fig. 9. Infinite plate with a circular hole subjected to unidirectional tension.

accordingly. If point O is collinear with two nodes of the ele-
ment, to maintain the linear compatibility property of the shape
functions, the shape functions at O now should be constructed
linearly using relative distances from the two related nodes. For
a smoothing cell with vanishing area, it makes no contribution
to the element stiffness matrix. It should be mentioned that, if
only convex polygonal elements are used, as to be implemented
in the following examples, these cases will never appear.

6. Numerical examples

In this section some examples will be analyzed to demon-
strate the effectiveness, accuracy and convergence properties
of the present method. The procedure to discretize a problem
domain using polygonal elements can be described as follows.
The problem domain and it boundaries are first discretized
by a set of properly scattered points P := {p1, p2, . . . , pn}.
Based on the given points, the domain is further decomposed
into the same number of cells C := {c1, c2, . . . , cn} (i.e., el-
ements in nSFEM), each covering a point such that for any
cell, say ci , all the points in this cell are closer to point pi
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Fig. 10. Domain discretization of the infinite plate with a hole using: (a) 121
and (b) 441 polygonal elements.

than they are to any other points pj (j �= i, pj ∈ P) in the
domain. The generated regions are the well-known Voronoi di-
agrams [22]. The initial point pi is regarded as the representa-
tive point of the ith element. Voronoi diagrams have a variety of
good properties, including convex cells, easy search for nearest
neighboring points and largest empty circles, etc. Once we get
the information of these Voronoi diagrams, a polygonal element
system is founded for numerical analysis.
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Fig. 11. Computed and exact displacements of the infinite plate with a hole:
(a) u; (b) v.

The following points need to be noted:

(1) The original discrete points P only serve as numerical de-
vices for domain decomposition and do not function in
following numerical analysis.

(2) If we prefer more regular elements, such as rectangular el-
ements, hexagon elements, we need to arrange a special
point pattern P before the generation of Voronoi diagrams.
For example, in order to obtain rectangular cells in inte-
rior domain, initially prescribed points should also be dis-
tributed in grid form. Detailed information can be found
in mathematical books on this topic.

(3) For demonstration purpose, we arrange the initial points
in an arbitrary form in the following examples regardless
of the issue of computational cost. As a result, the number
of element sides is generally changing from element to
element and each is larger than three.
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Fig. 12. Computed and exact stresses of the infinite plate with a hole: (a)
�x ; (b) �y .

In the following examples, each element is subdivided into
the same number of triangular SCs as its sides (or nodes). If
not specified otherwise, the simple averaging shape functions
described in Eqs. (19) and (20) are used.

6.1. Cantilever beam

A cantilever beam with length L and height D is studied as
benchmark problem, which is subjected to a parabolic traction
at the free end as shown in Fig. 5. The beam is assumed to
have a unit thickness so that plane stress condition is valid. The
analytical solution is available and can be found in a textbook
by Timoshenko and Goodier [23].

u1 = Py

6EI

[
(6L − 3x)x+(2+v)

(
y2 − D2

4

)]
,

u2=− P

6EI

[
3vy2(L−x)+(4+5v)

D2x

4
+(3L−x)x2

]
. (21)

Error in displacement u
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Normal stress error in x
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Normal stress error in y
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Fig. 13. Contour plots of: (a) the error in displacement u and (b) the normal
stress errors �x and �y .

where the moment of inertia I of the beam is given by I =
D3/12.

The stresses corresponding to the displacements Eq. (21) are

�11(x, y) = P(L − x)y

I
,

�22(x, y) = 0,

�12(x, y) = − P

2I

(
D2

4
− y2

)
. (22)
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Fig. 14. Comparison of convergence rates in: (a) displacement norm and
(b) energy norm.

The related parameters are taken as E=3.0×107 kPa, v=0.3,
D = 12 m, L = 48 m and P = 1000 N.

In order to study the convergence rate of the present method,
two norms are used here, i.e., displacement norm and energy
norm, as defined by

ed =
∑ |ui − uh

i |∑ |ui | ,

ee = 1

2LD

[∫
�
(�h − �)TD(�h − �)

]1/2

. (23)

In the computations, the nodes on the left boundary are con-
strained using the exact displacements obtained from Eq. (21)
and the loading on the right boundary uses the exact distributed
parabolic shear stresses in Eq. (22). The beam is analyzed us-
ing different number of elements. Fig. 5 gives one example
for the discretization of the beam. The relative deflection along
y = 0 and the contour of relative deflection errors and the

0.49 0.499 0.4999 0.49999 0.499999
0

0.5

1

1.5

2

2.5

3

Poisson's ratio

Mesh 1 (121 elements)

Mesh 2 (441 elements)

E
rr

o
r 

in
 d

is
p
la

c
e
m

e
n
t

Fig. 15. Error in displacement using different Poisson’s ratios.

exact and computed shear stress �12 are demonstrated in Fig. 6.
It is seen very accurate results are obtained as compared with
exact solutions. It is observed that, similar to the conventional
FEM results, the computed displacement is underestimated and
approaches the exact solution with the increase of elements
for this case. Due to the smoothing techniques, the computed
strains/stresses are constant within every SC and each has a
set of values. When computing stresses of an element, we can
average all sets of stresses on all the SCs in the element and
regard them as the stresses of the centroid point O (Fig. 4). The
point O is used as representative stress point of the element.
The stresses preferably have to be weighted using the respective
area of each cell. The convergence rates in displacement and
energy are demonstrated in Fig. 7. For easy and fair compari-
son, we now use regular quadrilateral elements, each subdivided
into four triangular or quadrilateral cells for integration. In the
four-node FEM 2 × 2 Gauss points in an element are used for
computing displacements and one Gauss point for computing
stresses and energy. So the full superconvergence with optimal
error O(h2) can be obtained for FEM [1]. It is observed from
this figure that both nSFEM and FEM give largely compara-
ble convergence rates in displacement and energy. The results
using nSFEM are more accurate than the FEM. In nSFEM,
quadrilateral cell seems to perform better than triangular cell.

To investigate the capability of nSFEM in solving prob-
lems involving nearly incompressible materials, two polygo-
nal meshes are employed with Poisson’s ratio approaching 0.5
gradually. The selective integration described in Section 4 is
used. It is noticed from Fig. 8 that the method works very well
for this kind of material (plane strain problem). When Poisson’s
ratio is bigger than 0.499, the error in displacement almost re-
mains constant.

6.2. Infinite plate with a circular hole

Fig. 9 represents a plate with a central circular hole subjected
to a unidirectional tensile load of 1.0 N/m at infinity in the



858 K.Y. Dai et al. / Finite Elements in Analysis and Design 43 (2007) 847–860

x-direction and Fig. 10 gives the discretization of the domain
using two kinds of meshes (121 and 441 elements). Due to its
symmetry, only the upper right quadrant of the plate is modeled.
Plane strain condition is considered and E = 1.0 × 103 N/m2,
v = 0.3. Symmetry conditions are imposed on the left and
bottom edges, and the inner boundary of the hole is traction
free. The exact solution for the stresses is [23]

�11 = 1 − a2

r2

[
3

2
cos 2	 + cos 4	

]
+ 3a4

2r4 cos 4	,

�22 = −a2

r2

[
1

2
cos 2	 − cos 4	

]
− 3a4

2r4 cos 4	,

�12 = −a2

r2

[
1

2
sin 2	 + sin 4	

]
+ 3a4

2r4 sin 4	, (24)

where (r, 	) are the polar coordinates and 	 is measured coun-
terclockwise from the positive x-axis. Traction boundary con-
ditions are imposed on the right (x = 5) and top (y = 5) edges
based on the exact solution Eq. (24). The displacement com-
ponents corresponding to the stresses are

u1 = a

8�

[
r

a
(
 + 1) cos 	 + 2

a

r
((1 + 
) cos 	 + cos 3	)

−2
a3

r3 cos 3	

]
,

u2 = a

8�

[
r

a
(
 − 1) sin 	 + 2

a

r
((1 − 
) sin 	 + sin 3	)

−2
a3

r3 sin 3	

]
, (25)
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Fig. 16. Geometric model and boundary conditions an automobile connecting bar.

where 
 is defined in terms of Poisson’s ratio by 
 = 3 − 4v

for plane strain cases.
From Figs. 11 and 12, it is observed that all the computed

displacements and stresses are in good agreement with the ana-
lytical solutions. With the refinement of the mesh, the accuracy
is getting better. It is also noticed that the present stresses are
very smooth though no post-processing is performed for them.
The contour plots of the error in displacement and stresses
are displayed in Fig. 13. Very good accuracy can be obtained.
The convergence rates in displacement and energy are demon-
strated in Fig. 14 using quadrilateral elements for both FEM
and nSFEM. The simple method described in Eq. (20) is em-
ployed to form the nSFEM shape functions. It is seen that the
nSFEM using four quadrilateral cells gives much more accu-
rate results and higher convergence rates in displacement and
energy than using triangular cells and FEM results. When using
nSFEM with triangular cells, if RPIM method with linear poly-
nomial reproduction is used to construct the shape function for
interior points of an element, the accuracy for both displace-
ment and energy can be improved greatly. Fig. 15 shows the
error in displacement for nearly incompressible material using
two polygonal meshes. Once again the error seems constant
with the increase of Poisson’s ratio.

6.3. Connecting bar

The last example performs a static analysis of an automobile
part, a connecting bar with a relatively complex configuration,
as shown in Fig. 16. The boundary conditions as well as the
applied load are demonstrated in this figure with p = 1 MPa.
Two types of meshes are used for analysis with 346 elements in
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Fig. 17. Domain discretization of the connecting bar using two meshes (346
and 525 polygonal elements).
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Fig. 18. Displacement u from the present method and FEM via ABAQUS.

mesh 1 and 525 in mesh 2 as illustrated in Fig. 17. Plane stress
problem is considered with material constants E = 10 GPa and
v = 0.3. As no closed form solutions are available, a reference
solution is obtained using the commercial software ABAQUS�

with 10364 nodes. Fig. 18 gives the displacement distributions
along x-axis and it is observed that they are in good accord
as compared with the ABAQUS solutions. The coarse mesh
still gives satisfactory displacements. Fig. 19 demonstrates the
stress distributions along the x- axis. It is noticed again that the
stresses are very smooth as the previous example. Very good
agreement is seen except those close to the boundary nodes.
Increasing the number of elements near boundary can enhance
the accuracy.
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Fig. 19. Normal stress �x from the present method and FEM via ABAQUS.

7. Concluding remarks

Smoothed finite element method (SFEM) was recently pro-
posed to improve the accuracy and convergence rate of the con-
ventional four-node isoparametric finite elements. Due to the
introducing of strain smoothing procedure the coordinate trans-
formation is not necessary and thus the restriction on the shape
of quadrilateral elements can be eliminated for mapped ele-
ments. In this work SFEM has been extended to more general
case, an n-sided polygonal element (or nSFEM), and problem
domain can be discretized in a very flexible manner.

The stability analysis is performed for polygonal elements
and it is found that one SC is equivalent to one quadrature point
in FEM, which provides three independent strain relations (or
constraints). A criterion is provided to determine the proper
number of cells that an element is subdivided. A polygonal el-
ement subdivided into the same number of triangular cells as
its sides is always stable and gives good accuracy in computa-
tions. Selective integration scheme is recommended for solving
volumetric locking problems concerning nearly incompressible
materials.

Several numerical experiments are analyzed and it is found
that the present method obtains very accurate results with the
employment of the simple shape function described in the work.
The computed displacement can be improved by using other
higher order shape functions such as MLS/RPIM. It should be
mentioned that, it may not be wise to use polygonal elements
all along in the entire problem domain as enlarged number of
nodes will increase the computational cost but not reduce the
dimension of elements or enhance the convergence property
prominently. However, our suggestion is that for interior re-
gion of a problem domain, four-node quadrilateral smoothed
elements are strongly recommended but polygonal elements
can be used for region near boundary or very irregular parts.
In addition, it is very straightforward and convenient to inte-
grate the technique with the conventional finite elements when
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necessary, such as problems with complicated configuration.
Though only 2D linear elasticity problems are investigated in
this work, there is no difficulty to apply nSFEM to some other
more complicated cases, such as 3D problems, time-dependent
transient problems or those involving material and geometric
nonlinearities.
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